Rapid and Quantitative Detection of Lung Cancer Biomarker ENOX2 Using a Novel Aptamer in an Electrochemical DNA-Based (E-DNA) Biosensor

نویسندگان

چکیده

To overcome early cancer detection challenges, diagnostic tools enabling more sensitive, rapid, and noninvasive are necessary. An attractive target for blood tests is human Ecto-NOX disulfide–thiol exchanger 2 (ENOX2), expressed in most types regularly shed into sera. Here, we developed an electrochemical DNA-based (E-DNA) biosensor that rapidly detects physiologically relevant levels of ENOX2. identify ENOX2-binding aptamers could potentially be used a biosensor, recombinantly ENOX2 was as binding oligonucleotide library pull-down generated highly enriched aptamer. This candidate aptamer sensitively bound via gel mobility shift assays. enable this to function E-DNA the sequence modified adopt two conformations, one capable binding, with disrupted binding. Upon introduction, conformational state resulted changed dynamics redox reporter molecule, which significant, target-specific electrical current readout change. sensitivity at or below range. The design presented here may development detection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Aptamer-based Biosensor for Troponin I Detection in Diagnosis of Myocardial Infarction

Background: Acute myocardial infarction (MI) accounts for one third of deaths. Cardiac troponin I (TnI) is a reliable biomarker of cardiac muscle tissue injury and is employed in the early diagnosis of MI.Objectives: In this study, a molecular method is introduced to early diagnosis of MI by rapid detection of TnI.Materials and Methods: The detection method was based on electrochemical aptasens...

متن کامل

A novel optical DNA biosensor for detection of trace concentration of Methylene blue using Gold nano-particles and Guanine rich single strand DNA

The glass surface modification with 3-(mercaptopropyl) trimethoxysilane (MPTS), gold nano-particles (GN) and guanine rich single strand DNA (ss-DNA) was utilized as a novel and efficient platform for sensing trace concentration of methylene blue (MB) by an inexpensive spectrophotometric method. Methylene Blue (MB) can interact with the guanine base of single strand DNA and absorbed onto glass s...

متن کامل

A novel optical DNA biosensor for detection of trace concentration of Methylene blue using Gold nano-particles and Guanine rich single strand DNA

The glass surface modification with 3-(mercaptopropyl) trimethoxysilane (MPTS), gold nano-particles (GN) and guanine rich single strand DNA (ss-DNA) was utilized as a novel and efficient platform for sensing trace concentration of methylene blue (MB) by an inexpensive spectrophotometric method. Methylene Blue (MB) can interact with the guanine base of single strand DNA and absorbed onto glass s...

متن کامل

Advancement in electrochemical DNA-biosensors for GMOs detection: A review

Genetically modified organisms (GMOs) are plants or animals whose genetic make-up has been transformed by recombinant DNA technology, which has new features such as resistance to herbicides, virus and insect. Recently, genetic modification of food products has increased in order to reduce world poverty and hunger and increase food production However, the impact of GMOs on the human health is a ...

متن کامل

Aptamer-based electrochemical biosensor for interferon gamma detection.

In this paper, we describe the development of an electrochemical DNA aptamer-based biosensor for detection of interferon (IFN)-γ. A DNA hairpin containing IFN-γ-binding aptamer was thiolated, conjugated with methylene blue (MB) redox tag, and immobilized on a gold electrode by self-assembly. Binding of IFN-γ caused the aptamer hairpin to unfold, pushing MB redox molecules away from the electrod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biosensors

سال: 2023

ISSN: ['0265-928X', '1873-4219']

DOI: https://doi.org/10.3390/bios13070675